Ribosomes, Transcription, Translation (2024)

Thegenetic information stored in DNA is a living archive of instructions thatcells use to accomplish the functions of life. Inside each cell, catalysts seekout the appropriate information from this archive and use it to build newproteins — proteins that make up the structures of the cell, run thebiochemical reactions in the cell, and are sometimes manufactured for export. Although allof the cells that make up a multicellular organism contain identicalgenetic information, functionally different cells within the organism usedifferent sets of catalysts to express only specific portions of theseinstructions to accomplish the functions of life.

How Is Genetic Information Passed on in Dividing Cells?

When a cell divides, it creates one copy of its genetic information — in the form of DNA molecules — for each of the two resulting daughter cells. The accuracy of these copies determines the health and inherited features of the nascent cells, so it is essential that the process of DNA replication be as accurate as possible (Figure 1).

Ribosomes, Transcription, Translation (1)

Figure 1:DNA replication of the leading and lagging strand

The helicase unzips the double-stranded DNA for replication, making a forked structure. The primase generates short strands of RNA that bind to the single-stranded DNA to initiate DNA synthesis by the DNA polymerase. This enzyme can work only in the 5' to 3' direction, so it replicates the leading strand continuously. Lagging-strand replication is discontinuous, with short Okazaki fragments being formed and later linked together.

© 2006 Nature Publishing Group Bell, S. D. Molecular biology: Prime-time progress. Nature 439, 542-543 (2006). All rights reserved.

Figure Detail

One factor that helps ensure precise replication is the double-helical structure of DNA itself. In particular, the two strands of the DNA double helix are made up of combinations of molecules called nucleotides. DNA is constructed from just four different nucleotides — adenine (A), thymine (T), cytosine (C), and guanine (G) — each of which is named for the nitrogenous base it contains. Moreover, the nucleotides that form one strand of the DNA double helix always bond with the nucleotides in the other strand according to a pattern known as complementary base-pairing — specifically, A always pairs with T, and C always pairs with G (Figure 2). Thus, during cell division, the paired strands unravel and each strand serves as the template for synthesis of a new complementary strand.

Ribosomes, Transcription, Translation (2)

Each nucleotide has an affinity for its partner: A pairs with T, and C pairs with G.

In most multicellular organisms, every cell carries the same DNA, but this genetic information is used in varying ways by different types of cells. In other words, what a cell "does" within an organism dictates which of its genes are expressed. Nerve cells, for example, synthesize an abundance of chemicals called neurotransmitters, which they use to send messages to other cells, whereas muscle cells load themselves with the protein-based filaments necessary for muscle contractions.

What Are the Initial Steps in Accessing Genetic Information?

Ribosomes, Transcription, Translation (3)

Figure 3:RNA polymerase at work

RNA polymerase (green) synthesizes a strand of RNA that is complementary to the DNA template strand below it.

© 2009 Nature Education All rights reserved.

Transcription is the first step in decoding a cell's genetic information. During transcription, enzymes called RNA polymerases build RNA molecules that are complementary to a portion of one strand of the DNA double helix (Figure 3).

RNA molecules differ from DNA molecules in several important ways: They are single stranded rather than double stranded; their sugar component is a ribose rather than a deoxyribose; and they include uracil (U) nucleotides rather than thymine (T) nucleotides (Figure 4). Also, because they are single strands, RNA molecules don't form helices; rather, they fold into complex structures that are stabilized by internal complementary base-pairing.

Ribosomes, Transcription, Translation (4)

Figure 4:DNA (top) includes thymine (red); in RNA (bottom), thymine is replaced by uracil (yellow)

© 2009 Nature Education All rights reserved.

Three general classes of RNA molecules are involved in expressing the genes encoded within a cell's DNA. Messenger RNA (mRNA) molecules carry the coding sequences for protein synthesis and are called transcripts; ribosomal RNA (rRNA) molecules form the core of a cell's ribosomes (the structures in which protein synthesis takes place); and transfer RNA (tRNA) molecules carry amino acids to the ribosomes during protein synthesis. In eukaryotic cells, each class of RNA has its own polymerase, whereas in prokaryotic cells, a single RNA polymerase synthesizes the different class of RNA. Other types of RNA also exist but are not as well understood, although they appear to play regulatory roles in gene expression and also be involved in protection against invading viruses.

mRNA is the most variable class of RNA, and there are literally thousands of different mRNA molecules present in a cell at any given time. Some mRNA molecules are abundant, numbering in the hundreds or thousands, as is often true of transcripts encoding structural proteins. Other mRNAs are quite rare, with perhaps only a single copy present, as is sometimes the case for transcripts that encode signaling proteins. mRNAs also vary in how long-lived they are. In eukaryotes, transcripts for structural proteins may remain intact for over ten hours, whereas transcripts for signaling proteins may be degraded in less than ten minutes.

Cells can be characterized by the spectrum of mRNA molecules present within them; this spectrum is called the transcriptome. Whereas each cell in a multicellular organism carries the same DNA or genome, its transcriptome varies widely according to cell type and function. For instance, the insulin-producing cells of the pancreas contain transcripts for insulin, but bone cells do not. Even though bone cells carry the gene for insulin, this gene is not transcribed. Therefore, the transcriptome functions as a kind of catalog of all of the genes that are being expressed in a cell at a particular point in time.

What Is the Function of Ribosomes?

Ribosomes, Transcription, Translation (5)

Figure 5:An electron micrograph of a prokaryote (Escherichia coli), showing DNA and ribosomes

This Escherichia coli cell has been treated with chemicals and sectioned so its DNA and ribosomes are clearly visible. The DNA appears as swirls in the center of the cell, and the ribosomes appear as dark particles at the cell periphery.

Courtesy of Dr. Abraham Minsky (2014). All rights reserved.

Ribosomes are the sites in a cell in which protein synthesis takes place. Cells have many ribosomes, and the exact number depends on how active a particular cell is in synthesizing proteins. For example, rapidly growing cells usually have a large number of ribosomes (Figure 5).

Ribosomes are complexes of rRNA molecules and proteins, and they can be observed in electron micrographs of cells. Sometimes, ribosomes are visible as clusters, called polyribosomes. In eukaryotes (but not in prokaryotes), some of the ribosomes are attached to internal membranes, where they synthesize the proteins that will later reside in those membranes, or are destined for secretion (Figure 6). Although only a few rRNA molecules are present in each ribosome, these molecules make up about half of the ribosomal mass. The remaining mass consists of a number of proteins — nearly 60 in prokaryotic cells and over 80 in eukaryotic cells.

Within the ribosome, the rRNA molecules direct the catalytic steps of protein synthesis — the stitching together of amino acids to make a protein molecule. In fact, rRNA is sometimes called a ribozyme or catalytic RNA to reflect this function.

Eukaryotic and prokaryotic ribosomes are different from each other as a result of divergent evolution. These differences are exploited by antibiotics, which are designed to inhibit the prokaryotic ribosomes of infectious bacteria without affecting eukaryotic ribosomes, thereby not interfering with the cells of the sick host.

Ribosomes, Transcription, Translation (6)

Figure 6:The endoplasmic reticulum of this eukaryotic cell is studded with ribosomes.

Electron micrograph of a pancreatic exocrine cell section. The cytosol is filled with closely packed sheets of endoplasmic reticulum membrane studded with ribosomes. At the bottom left is a portion of the nucleus and its nuclear envelope. Image courtesy of Prof. L. Orci (University of Geneva, Switzerland).

© 2014 Nature Publishing Group Schekman, R. Merging cultures in the study of membrane traffic. Nature Cell Biology 6, 483-486 (2004) doi:10.1038/ncb0604-483. All rights reserved.

How Does the Whole Process Result in New Proteins?

After the transcription of DNA to mRNA is complete, translation — or the reading of these mRNAs to make proteins — begins. Recall that mRNA molecules are single stranded, and the order of their bases — A, U, C, and G — is complementary to that in specific portions of the cell's DNA. Each mRNA dictates the order in which amino acids should be added to a growing protein as it is synthesized. In fact, every amino acid is represented by a three-nucleotide sequence or codon along the mRNA molecule. For example, AGC is the mRNA codon for the amino acid serine, and UAA is a signal to stop translating a protein — also called the stop codon (Figure 7).

Ribosomes, Transcription, Translation (7)

Figure 7:The ribosome and translation

A ribosome is composed of two subunits: large and small. During translation, ribosomal subunits assemble together like a sandwich on the strand of mRNA, where they proceed to attract tRNA molecules tethered to amino acids (circles). A long chain of amino acids emerges as the ribosome decodes the mRNA sequence into a polypeptide, or a new protein.

© 2010 Nature Education All rights reserved.

Figure Detail

Molecules of tRNA are responsible for matching amino acids with the appropriate codons in mRNA. Each tRNA molecule has two distinct ends, one of which binds to a specific amino acid, and the other which binds to the corresponding mRNA codon. During translation, these tRNAs carry amino acids to the ribosome and join with their complementary codons. Then, the assembled amino acids are joined together as the ribosome, with its resident rRNAs, moves along the mRNA molecule in a ratchet-like motion. The resulting protein chains can be hundreds of amino acids in length, and synthesizing these molecules requires a huge amount of chemical energy (Figure 8).

Ribosomes, Transcription, Translation (8)

Figure 8:The major steps of translation

(1) Translation begins when a ribosome (gray) docks on a start codon (red) of an mRNA molecule in the cytoplasm. (2) Next, tRNA molecules attached to amino acids (spheres) dock at the corresponding triplet codon sequence on the mRNA molecule. (3, 4, and 5) This process repeats over and over, with multiple tRNAs docking and connecting successive amino acids into a growing chain that elongates out of the top of the ribosome. (6) When the ribosome encounters a stop codon, it falls off the mRNA molecule and releases the protein for use in the cell.

© 2010 Nature Education All rights reserved.

Figure Detail

In prokaryotic cells, transcription (DNA to mRNA) and translation (mRNA to protein) are so closely linked that translation usually begins before transcription is complete. In eukaryotic cells, however, the two processes are separated in both space and time: mRNAs are synthesized in the nucleus, and proteins are later made in the cytoplasm.

Conclusion

Cellular DNA contains instructions for building the various proteins the cellneeds to survive. In order for a cell to manufacture these proteins, specificgenes within its DNA must first be transcribed into molecules of mRNA; then,these transcripts must be translated into chains of amino acids, which laterfold into fully functional proteins. Although all of the cells in amulticellular organism contain the same set of genetic information, the transcriptomesof different cells vary depending on the cells' structure and function in theorganism.

Ribosomes, Transcription, Translation (2024)

FAQs

What do ribosomes do in transcription and translation? ›

Ribosomes provide a structure in which translation can take place. They also catalyze the reaction that links amino acids to make a new protein. tRNAs (transfer RNAs) carry amino acids to the ribosome. They act as "bridges," matching a codon in an mRNA with the amino acid it codes for.

Does the ribosome read 5 to 3? ›

All mRNAs are read in the 5´ to 3´ direction, and polypeptide chains are synthesized from the amino to the carboxy terminus. Each amino acid is specified by three bases (a codon) in the mRNA, according to a nearly universal genetic code.

Are ribosomes capable of translating the message found in mRNA into a protein? ›

Ribosomes (/ˈraɪbəzoʊm, -soʊm/) are macromolecular machines, found within all cells, that perform biological protein synthesis (messenger RNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA molecules to form polypeptide chains.

What does the ribosome translate quizlet? ›

What is the role of the ribosome in translation? The ribosomal subunits attach to mRNA, read the START codon, call for the correct tRNA, which carries in the necessary amino acid. The ribosome moves to the next codon, calls the next tRNA in, and binds their amino acids together.

Do ribosomes play a role in transcription? ›

Instead, the translating ribosome actively pushes RNA polymerase out of the backtracked state, thereby reactivating transcription. We show that the distance between the two machineries upon their contact on mRNA is smaller than previously thought, suggesting intimate interactions between them.

Do ribosomes function in transcription? ›

During transcription, the DNA sequence of a gene is used as a template to synthesize a messenger RNA (mRNA) molecule. This mRNA molecule carries the genetic information from the DNA to the ribosomes. Once the mRNA molecule reaches the ribosome, the translation process commences.

Is transcription 5 to 3? ›

The main enzyme involved in transcription is RNA polymerase, which uses a single-stranded DNA template to synthesize a complementary strand of RNA. Specifically, RNA polymerase builds an RNA strand in the 5' to 3' direction, adding each new nucleotide to the 3' end of the strand.

Is translation 5 to 3? ›

Often, molecular processes can only take place in a certain direction along a DNA or RNA strand. For instance, in translation, the mRNA is always read from the 5' end towards the 3' end.

Does translation start at 5 or 3? ›

The three possible reading frames in protein synthesis. In the process of translating a nucleotide sequence (blue) into an amino acid sequence (green), the sequence of nucleotides in an mRNA molecule is read from the 5′ to the 3′ end in (more...)

Are ribosomes responsible for translation? ›

During translation, ribosomal subunits assemble together like a sandwich on the strand of mRNA, where they proceed to attract tRNA molecules tethered to amino acids (circles). A long chain of amino acids emerges as the ribosome decodes the mRNA sequence into a polypeptide, or a new protein.

What are the steps of translation? ›

  • The process of forming a polypeptide chain from mRNA codons is known as translation.
  • It takes place in four steps namely, tRNA charging, Initiation, Elongation, and Termination.

What begins the process of transcription? ›

The Transcription Process. The process of transcription begins when an enzyme called RNA polymerase (RNA pol) attaches to the template DNA strand and begins to catalyze production of complementary RNA.

What are the 5 stages of protein synthesis? ›

Major steps of protein synthesis:
  • A. Activation of amino acids:
  • B. Transfer of amino acids to tRNA:
  • C. Initiation of polypeptide chain:
  • D. Chain Termination:
  • E. Protein translocation:

How does a ribosome know to where to stop protein translation? ›

When a ribosome is translating a molecule of messenger RNA (mRNA) to produce a protein, it stops when it encounters a triplet of nucleotides called a termination codon.

How do ribosomes translate genetic information? ›

A ribosome is an intercellular structure made of both RNA and protein, and it is the site of protein synthesis in the cell. The ribosome reads the messenger RNA (mRNA) sequence and translates that genetic code into a specified string of amino acids, which grow into long chains that fold to form proteins.

Do ribosomes participate in transcription and translation? ›

Because bacterial mRNA does not need to be processed and is accessible to ribosomes while it is being made, ribosomes can attach to the free end of a bacterial mRNA molecule and start translating it even before the transcription of that RNA is complete, following closely behind the RNA polymerase as it moves along DNA.

What is the role of ribosomal proteins in translation? ›

In the mature ribosome, ribosomal proteins participate in the translation process, binding of translation factors and tuning ribosomal properties including translation fidelity. Ribosomal proteins are also a useful tool to study how cellular proteins acquired their ability to fold over geological timescales.

Does transcription or translation occur in the ribosome? ›

While in eukaryotes, translation happens on the ribosomes and transcription occurs in the nucleus. Transcription begins when an RNA polymerase protein binds to a promoter in DNA and creates a transcription initiation complex.

Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 5866

Rating: 4.8 / 5 (48 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.