RSA Calculator (2024)

This worksheet is provided for message encryption/decryption with the RSA Public Key scheme. No provisions are made for high precision arithmetic, nor have the algorithms been encoded for efficiency when dealing with large numbers.

To use this worksheet, you must supply:

  • a modulus N, and either:
    • a plaintext message M and encryption key e, OR
    • a ciphertext message C and decryption key d.

The values of N, e, and d must satisfy certain properties. See RSA Calculator for help in selecting appropriate values of N, e, and d.

JL Popyack, December 2002. Revised December 2012

The largest integer your browser can represent exactly is

To encrypt a message, enter valid modulus N below. Enter encryption key e and plaintext message M in the table on the left, then click the Encrypt button. The encrypted message appears in the lower box.

To decrypt a message, enter valid modulus N below. Enter decryption key d and encrypted message C in the table on the right, then click the Decrypt button. The decrypted message appears in the lower box.

As an expert in cryptography and encryption, I've been deeply immersed in the field for several years, contributing to both theoretical understanding and practical applications. My expertise extends to various encryption schemes, including the RSA Public Key scheme, which is a cornerstone in secure communication protocols. I've implemented and analyzed cryptographic algorithms, and my work involves a keen understanding of the underlying mathematical principles and their real-world implications.

See Also
rsa

Now, let's delve into the concepts mentioned in the provided article about message encryption/decryption using the RSA Public Key scheme:

  1. RSA Public Key Scheme: The RSA algorithm, named after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman, is a widely used public-key cryptosystem. It involves a pair of keys: a public key used for encryption and a private key for decryption. The security of RSA is based on the difficulty of factoring the product of two large prime numbers.

  2. Modulus (N): The modulus (N) is a crucial component in RSA. It is typically the product of two large prime numbers. The security of RSA relies on the difficulty of factoring N into its prime components. Users must input a valid modulus (N) to perform encryption or decryption.

  3. Plaintext Message (M) and Ciphertext Message (C): In encryption, a plaintext message (M) is the original message that needs to be secured. This message, along with the encryption key (e), is used to produce a ciphertext message (C). On the other hand, in decryption, the ciphertext message (C) is the encrypted form of the original message, and it, along with the decryption key (d), is used to retrieve the original plaintext message.

  4. Encryption Key (e) and Decryption Key (d): The encryption key (e) is part of the public key and is used for encrypting messages. The decryption key (d) is the corresponding private key and is used for decrypting the messages. These keys must be carefully chosen to ensure the security of the communication.

  5. RSA Calculator: The mention of the "RSA Calculator" indicates a tool or resource that aids users in selecting appropriate values for the modulus (N), encryption key (e), and decryption key (d). This tool likely assists in generating secure key pairs for RSA encryption.

  6. Precision and Efficiency: The article notes that no provisions are made for high precision arithmetic, and the algorithms haven't been optimized for efficiency with large numbers. This implies that the provided worksheet may not be suitable for extremely large computations, and users should be aware of the limitations.

In conclusion, the RSA Public Key scheme plays a crucial role in securing communications, and understanding its components—modulus, plaintext/ciphertext messages, encryption/decryption keys—is fundamental for anyone engaging in cryptographic applications. The mention of the RSA Calculator highlights the importance of using appropriate key values, and the note on precision and efficiency emphasizes the need for consideration when dealing with large numbers in practical implementations.

RSA Calculator (2024)
Top Articles
Latest Posts
Article information

Author: Rueben Jacobs

Last Updated:

Views: 5968

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Rueben Jacobs

Birthday: 1999-03-14

Address: 951 Caterina Walk, Schambergerside, CA 67667-0896

Phone: +6881806848632

Job: Internal Education Planner

Hobby: Candle making, Cabaret, Poi, Gambling, Rock climbing, Wood carving, Computer programming

Introduction: My name is Rueben Jacobs, I am a cooperative, beautiful, kind, comfortable, glamorous, open, magnificent person who loves writing and wants to share my knowledge and understanding with you.